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Abstract

High energy lasers have many applications, such as in aerospace, weapons, wireless

power transfer, and manufacturing. Fluid-laser interaction is important to predicting

power at receiver, and other measures of laser beam quality. Typically the carry-

ing medium of the laser is modeled statistically. This dissertation describes a novel

method of coupling fluid dynamics to beam propagation in free space. The cou-

pled laser-fluid solver captures dynamic interaction of fluid temperature and beam

intensity. Ultimately, the model captures the effects of fluid convection in the laser

intensity-field.

Boundary conditions play an important role for fluid dynamics, more so than for

beam dynamics. Simulation convergence and time performance are compared for

three fluid boundary conditions: periodic boundary conditions, finite box domain,

and an open boundary condition.

Scintillation is included in the final simulations. Scintillation is an important

factor in laser beam quality. It is usually incorporated via phase-screens on the beam

alone. A unique hybrid volumetric phase-screen model is developed to simulate laser-

fluid interaction in the presence of small turbulence. The hybrid model is simulated

and results of simulations, where scintillation is asymptotically incorporated into the

coupled fluid-beam simulation, are presented.
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AFIT/ENC DISSERTATION:

NUMERICAL SIMULATION OF HIGH ENERGY LASER PROPAGATION

I. Introduction

A study of the atmospheric effects on high energy laser (HEL) propagation through

the atmosphere was made with emphasis on the dynamic interaction between the

heat generated by the laser beam and the resulting change in refractive index. Laser

heating of the medium induces convection in the fluid carrying the laser beam. In

turn, the fluid heating alters the index of refraction, bending the laser beam away

from the heated region [3] as well as deforming the beam spot.

Thermal blooming occurs when a laser beam propagates through an absorbing

medium. The energy that is absorbed by the medium is generally very small, but

the effect is to heat the medium, giving rise to local gradients in the density and

temperature of the medium. The refractive index of the medium changes in the

immediate vicinity of the beam where the heating is greatest; The beam becomes

defocused and spreads - as denoted by “blooming” [1].

Thermal blooming has been discussed since lasers first became powerful enough

to noticeably heat a medium in 1964 [4] and has been well documented since its first

observance [5]. Thermal blooming’s relevance to laser propagation grows in proportion

to laser power.

It is clear from an overview of laser history that lasers are growing more and more

powerful [6, 7, 8]. Continuous wave HEL’s producing kilowatt levels of power are

commonplace in fabrication applications and medical surgery, and megawatt lasers

are being studied for application in rock drilling [9]. With increased laser power come

12
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more applications. These include, but are not limited to, remote sensing of clouds

for ice-crystal content [10], airborne laser scanning for range and object identifica-

tion [11], targeting [6], radio astronomy, space radio communication, and satellite

communication [1].

NASA is developing HEL-based power beaming system to enable wireless power

transfer [12]. Contactless energy transfer over long distances (km range) using 1-100

W lasers also has application in unmanned aerial systems [13, 12]. Such systems

integrate remote laser communications and lasers used to remotely recharge batteries

in the network [14].

In all of the applications mentioned beam quality is of concern. Thermal blooming

is a negative effect on beam quality and amount of power delivered to an end source.

Many of these applications have aroused the interest of Department of Defense and

government agencies who require measures of merit in order to discuss feasibility of its

systems acquisition [6, 15]. Regardless of the measure of merit selected, understanding

thermal blooming and being able to predict and characterize HEL beam propagation

through a medium is necessary.

An important application of this research is to provide a computational solution

to HEL propagation that fully incorporates both fluid and light flows, and their

interactions. This can serve as a wide benchmark for computationally fast operational

propagation simulations.

This dissertation develops a novel method for numerically modeling laser induced

convection in its carrying medium is developed. Beam propagation is simulated vol-

umetrically with FFT methods using interpolation between two-dimensional trans-

verse temperature instances. Fluid dynamics are simulated with a predictor-corrector

scheme, the Boussinesq model uses beam intensity from the Paraxial simulation to

force temperature.

13



www.manaraa.com

Boundary conditions for the free space problem are examined. The boundary

conditions study in this dissertation provides a novel analysis of FOB. FOB provides

an accurate, if costly, method for modeling laser propagation in an open environment.

Imposing periodic boundary conditions is not as accurate, but access to FFT gives

advantages in computation costs and allows for increased resolution in a reasonable

amount of time.

Scintillation is included in the coupled solver using a hybrid volumetric and phase-

screen method. This is a computationally tractable method that allows inclusion

of scintillation initially present in the media as well as dynamics. Asymptotically

incorporating scintillation on intensity will be shown to create distortion in the beam

intensity. Behavior of the coupled solver is shown to parallel behavior of a laser

experiment photographed by Wick and Lloyd.

This disertation’s structure is as follows, the remainder of this chapter covers

some of the relevant work that has been done with respect to thermal blooming,

including the literature on thermal blooming and numerical models used to describe

laser induced convection. Chapter II discusses simulation assumptions and the fluid

and beam models in depth to describe how they fit into the numerical simulation

of laser-fluid interaction. Chapter III describes the numerical method applied for

the coupled laser-fluid simulation. Chapter IV covers a boundary conditions study

comparing periodic boundary conditions, finite box boundary conditions, and an open

boundary condition method described by Fornberg in [16]. Chapter V lays out the

choices made in the scintillated coupled laser-fluid simulation. Finally Chapter VI

presents the conclusions of this study as well as future work.

14
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1.1 Thermal Blooming

This section discusses the theory and literature dealing with thermal blooming.

Past work is described along with a discussion of this study’s contributions.

Thermal blooming depends on several factors including (1) laser-beam character-

istics like wavelength, phase and irradiance (2) kinetics of absorption, i.e. time for

absorbed energy to heat the medium, (3) mode of heat transfer balancing the ab-

sorbed energy (4) time-scale and (5) propagation medium and scenario - such as path

length, optical properties, platform speed, slewing and so forth [3, 1]. The coupled

laser-fluid model utilizes the convective time-scale, incorporating the effects of grav-

ity. The coupled model numerically simulates the effect of convective motion of the

heated atmosphere on the propagation of the laser seen in beam bending and spot

deformation.

Initial efforts centered on stationary continuous wave beams in a fluid where ther-

mal conduction dominated as the primary heat transfer mechanism, the effect ob-

served and modeled was essentially a uniformly spread beam at the end sensor. These

efforts assume a uniform, quiescent medium with no self-induced convection due to

heating from the HEL beam, resulting in a beam that spread radially with defocused

intensity as the beam passed through the media [3, 17, 18].

By 1969 interest shifted to considering a medium in motion [3]. These models

assume a uniform wind moving across the beam path as it passes through an atmo-

sphere [5, 19, 20, 21, 22, 23]. Further efforts focused on changing the atmosphere

through which the beam might pass [4, 23, 24, 25], but prescribed the atmosphere as

a static, statistical description.

It is not tenable to directly simulate atmospheric turbulence at the scale of laser

wavelengths. Typically an envelope equation is applied with discretely placed phase

screens where the small-scale fluctuations in the atmosphere are described statistically

15
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[26, 27, 28, 29, 30, 31].

Phase screens are N×N arrays of random complex numbers with statistics match-

ing those described by a spatial power spectral density function of refractive index

fluctuations, Φn(κ), where κ is the spatial wave number [1, 30]. Several options are

available for selecting Φn(κ) [1, 29, 30, 31]; variance of the distribution of turbulence

can be expressed

σ2(κ) =

(
2π

N∆z

)2

Φ(κ),

where Φ(κ) = 2π‖κ‖2∆zΦn(κ) and ∆z is the space between phase screens, which is

then used to define a phase screen in x-space

φ(x, y) = Cσ(κ)

∧

(1)

where C is a random N × N array drawn from a distribution with zero mean and

variance equal to one. This method provides two independent phase screens in real

and imaginary parts of (1) which can be convolved with the envelope equation [30, 31],

or the statistics of the temperature field [25, 32], to get the expected intensity.

Φn is usually computed by relying on the refractive index structure parameter, C2
n,

a scalar amplitude of refractive index fluctuations within the inner and outer scales

of turbulence measure [1]. In describing turbulence, and therefore scintillation, we

rely on C2
n to derive the statistics of turbulence. In [33, 34], Pries gives a discussion

of measured C2
n at White Sands Missile Range over a 2 week period, and summarizes

Gebhardt’s description of strong turbulence in terms of the structure parameter:

C2
n ≥ 10−14m−2/3 [35].

In [36] Fiorino et al put C2
n in terms of the temperature structure parameter, C2

T ,

with

C2
n = C2

T

[
79× 10−6 P

T 2

]2

, (2)
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where P is the pressure and T is the temperature. Thus C2
n can be computed with

C2
T , which in turn is gathered by measurement of temperature values via thermosonde

[36]. In [37] Rohmistrov et al compute the temperature structure constant using

C2
T = 〈[T ′(t+ ∆t)− T ′(t)]2〉(〈V 〉∆t)−2/3, (3)

where 〈V 〉 is the absolute value of wind velocity mean vector defined by 〈V 〉 =√
〈u〉2 + 〈v〉2 and T ′ = T − 〈T 〉. For a discrete samples, fk, of a function f(t)

averages are computed with the equation 〈f〉 =
1

N

N−1∑
k=0

fk, where N is the number of

samples. This simulates how an ultrasonic anemometer computes C2
T [37].

Difficulty in getting accurate C2
n measurement [38], alternatively, can be overcome

by using the implicit dependence of the structure function on propagation distance,

z, to compute atmospheric coherence diameter, r0 [39]. The method described in

Chapter V opts to employ spatial coherence radius, r0, to compute the phase screen.

A hybrid approach is employed computing fluid dynamics volumetrically to sim-

ulate the dynamics of self-induced convection in the presence of turbulence, using

phase spectrum density to generate a temperature phase screen to model turbulent

atmosphere. The next section covers the literature for the optical fluid solver.

1.2 Fluid Dynamics

The Navier-Stokes equations govern physical deformations of a Newtonian fluid,

so we use it to model the dynamics induced by a laser propagated through a medium.

The Navier-Stokes equation as given by Tritton in [40] is:

ρ
Du

Dt
= −∇p+ µ∇2u + F, (4)
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where u is the velocity vector, ρ is the density of the medium, µ is the coefficient

of viscosity and F represents the contributions of other forces contributing to the

specification of the problem. Using the standard notation for convective derivatives:

Df

Dt
= ft + (f · ∇)f

for any time-dependent function f .

Chorin, in [41], applies the Boussinesq approximation to simplify Navier-Stokes

equations in order to solve a thermal convection problem. The thermal convection

problem uses the Boussinesq approximation, since it is solved immediately about the

laser spot.

The Boussinesq approximation ignores density variations except where it is influ-

enced by acceleration due to gravity. Sound waves are neglected under application

of the Boussinesq approximation since sound waves move via density variations. The

advantage is that the problem is greatly simplified [40]. Moreover the turbulence we

are modeling is largely due to refractive index fluctuations in the medium. In electro-

magnetic wave propagation refractive index fluctuations are caused almost entirely

by variations in temperature; pressure variations are relatively small and rapidly dis-

persed [42, 43]. So while the Boussinesq is a simplification of fluid dynamics we are

justified in applying it in our application.

Having discussed the reasoning for choosing a Boussinesq fluid solver, the next

section covers the the beam propagation model.

1.3 Beam Propagation

We follow Sprangle, Peñano, et al, in utilizing the Paraxial equation derived from

Maxwell’s equations [44, 45, 46]. Sprangle states the Paraxial equation, with energy
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field Ẽ = Ae−ikηz + c.c. for η = η0 + ε2kη1, as

(
−∇2 + 2ikη0

∂

∂z
+ 2η0η1k

2

)
A = 0 (5)

where η is the index of refraction with η0 the average index of refraction and η1 a per-

turbation of refractive index, and k the wave number of the laser. ∇2 is the Laplace

operator in the transverse direction (∇2A = Axx+ Ayy) [46], applying notation modi-

fied from that used by Peñano and Sprangle. Following Sprangle et al, the expression

includes terms to address effects of absorption and scattering in the atmosphere, βa

and βs respectively:

(
−∇2 + 2ikη0

∂

∂z
+ 2η0η1k

2 − βa − βs
)

A = 0. (6)

Having established the choice of the Paraxial equation, we move on to Chapter II

which covers the numerical solution of these equations.
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II. Assumptions and Derivativations

Assumptions used in the optical fluid solver and the simulation of laser propagation

through a medium are presented in this chapter. A derivation of the Boussinesq

equations is then provided followed by a discussion of the numerical methods used to

approximate a solution. The Paraxial equation is then derived followed by a discussion

of index of refraction. The chapter is concluded with a presentation of the numerical

methods used to simulate laser propagation.

2.1 Assumptions

1. Incompressible flow: it is assumed that ∇ · u = 0. Pressure variations in

the medium do not significantly affect density variations. This allows for the

Boussinesq approximation.

2. Isobaric heating: A long distance beam length is assumed, which further implies

that the characteristic pulse length, tp, must be much larger than the time it

takes for the beam to propagate through the beam channel, tac = R0/c; R0 is

the beam radius. Therefore (8) can be applied since pressure equalizes quickly,

and changes in gas density are linearly related to changes in temperature [47].

3. Quiescent initial conditions: The primary turbulence is that which is induced

by the beam itself. This allows for the laser beam induced fluid dynamics to

be “seen”. Similarly, a high power laser is assumed: it is required that the

laser have sufficient power to ensure that heating from the beam dominates any

scintillation arising from turbulence. Essentially this requires a high contrast

between the initial turbulence and the turbulence induced by the laser.
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2.2 Boussinesq Equations

Following the discussion of Boussinesq fluid equations in [40], it is assumed that

the effect of the laser on the atmosphere is not large, allowing for the Boussinesq

approximation for the fluid flow. This assumption allows all but the temperature

variations to be ignored. Variations to density are included only inasmuch as they

relate to variations in temperature.

We consider incompressible fluid flows,

∇ · u = 0. (7)

ρDu/Dt is placed with ρ0Du/Dt in equation (4), where ρ0 is the average density and

is constant. Setting

F = ρg

allows for the effect of gravity. Density variations may be important, so density is

defined ρ = ρ0 + δρ. Gravitational acceleration can be written as g = ∇Φ, where Φ is

a potential and can be expressed as g = gẑ and Φ = gz if z is taken to be vertically

downwards. Thus

F = (ρ0 + δρ)∇Φ = ∇(ρ0Φ) + δρg.

Setting P = p = ρ0Φ equation (4) gives

ρ0
Du

Dt
= ∇P + µ∇2u + δρg (8)

Considering the influence of temperature variations, we have to assume

δρ 6= 0. As part of the Boussinesq approximation, though, the dependence of ρ on T

is linearized

(ρ1 − ρ0) = αρ0(T1 − T0),
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which can be written

δρ = αρ0δT,

where α is the coefficient of fluid expansion (for ideal gasses α = 1/T ). Exploiting

the assumption of linearity between density and temperature write

δρ = ρ0
T

T0

e2.

Where T is now the temperature fluctuation (we derive equations in the fluctuations of

T below) and T0 is the reference temperature, and the vertical downward orientation

of this forcing is denoted by the unit vector e2 = [0, 1, 0]′. This gives the Boussinesq

dynamical equation

Du

Dt
=

1

ρ0

∇P + µ∇2u +
g

T0

Te2. (9)

It is assumed, in keeping with the Boussinesq approximation, that the fluid has a

constant heat capacity per unit volume ρCp. Thus ρCpDT/Dt is the rate of heating

per unit volume of a fluid particle. Heating is caused by transfer of heat from particle

to neighboring particle by thermal conduction, and sometimes by internal heat gen-

eration. These terms in the heating equation correspond to viscosity and body force

terms in equation (9). The conductive heat flux is

H = −k∇T,

where k is the thermal conductivity of the fluid. Thus

ρCp
DT

Dt
= −∇ ·H + J (10)

where J is the rate of internal heat generation per unit volume. Let k be constant
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and equation (10) becomes

DT

Dt
= ν∇2T +

J

ρCP
(11)

where ν = k/ρCp is the thermal diffusivity or kinematic viscosity. Moreover every

term in which T appears is differentiated in space, so it is essentially an equation in

terms of the fluctuation of T .

Drawing together (7), (9) and (11) gives the Boussinesq equations. Setting

J

Cpρ
= βa|A|2,

where βa is the coefficient for linear loss of energy due to atmospheric absorption

and |A|2 is the intensity of the laser acting as our heat generation, expresses the

Boussinesq equations as

Du

Dt
=

1

ρ0

∇P + µ∇2u +
g

T0

Te2 (12a)

DT

Dt
= ν∇2T +

J

ρ0Cp
= ν∇2T + βa|A|2 (12b)

∇ · u = 0. (12c)

This method non-dimensionalizes (12) with velocity scale U , temperature scale

T0, and spatial length scale, L, in the transverse direction. The time scale is defined

as τ = L
U

, and the pressure scale is defined as P0 = ρ0U
2. We divide (12a) by

U2

L
on

both sides, and divide both sides of (12b) by
UT0

L
to yield dimensionless parameters

Re,Ri, Pe and St. This results in

Du

Dt
= ∇P +

1

Re
∇2u +RiTe2 (13a)
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DT

Dt
=

1

Pe
∇2T + St|A|2 (13b)

∇ · u = 0. (13c)

where Re is the Reynolds number that describes inertia versus viscosity, Ri is the

Richardson number describing velocity versus gravity wave speed, Pe is the Pèclet

number which covers the thermal diffusion and St is the Stanton number describing

the heating by the laser versus heat capacity of the medium. The formulae for these

parameters are given mathematically by

Re =
UL

µ
, Ri =

U2

gL
, Pe =

UL

ν
, St =

A2
0βL

UT0

.

These constants are approached from the opposite direction than usual when dis-

cussing them. Instead of setting the values L, U et cetera, the values of Re,Ri, Pe

and St are determined by the modeler. For each selected value for these constants

there exists a continuum of scenarios of laser settings and atmospheric conditions that

apply.

The next section discusses the numerical methods applied simulating the fluid

dynamics of the problem.

Modeling the Boussinesq Equations.

The optical fluid model is numerically solved with a pressure correction method

applied to both a fast Fourier solver and a finite difference solver.

In the finite difference solver the Boussinesq equations second order up-winding,

as described by Shyy et al in [48], are employed to approximate the nonlinear terms

−(u · ∇)u, and − (u · ∇)T. (14)
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A centered difference scheme is used to approximate

1

Re
∇2u, and

1

Pe
∇2T. (15)

A second order centered difference is applied so that the overall finite difference scheme

has spatial convergence O(h2) for characteristic space step, h.

In the fast Fourier solver, nonlinear terms (14) and viscosity terms (15) are approx-

imated in Fourier space. This gives the fast Fourier solver spectral spatial convergence

[49].

To ensure that the divergence of the numerical fluid flow is zero, a pressure cor-

rection of divergence is included in both solvers. The divergence of (13a) is computed

so that

∇2P = ∇ · [(u · ∇)u−RiTe2]. (16)

Equation (16) is a Poisson equation. In the finite difference solver, a second-order

Poisson solver is used to update P and project off the divergence in (13a) [50, 51].

This “pressure correction” step ensures that∇·u = 0. The fast Fourier solver projects

off divergence with the same process, but without a Poisson solver since P in (16)

can be computed numerically in Fourier space.

Both the finite difference and Fourier solvers are combined with an RK-4 scheme

over time to get O(∆t4) convergence in time. Convergence in time and space of the

finite difference fluid solver, in terms of the fluid’s divergence converging to zero, is

discussed in the next section. Comparison of (13a) with temperature set equal to zero

to Taylor-Green vortices, which have a known solution, is made in the next section

as well.
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Boussinesq Convergence.

Equation (13c) provides a valuable measure of merit for the finite difference fluid

solver. This section provides an analysis of convergence of the fluid’s divergence, as

approximated by the finite difference solver, to zero as a function of time and space

step sizes. A comparison of (13), with Ri = 0, is also made against the exact solution

to Taylor-Green vortices, a special case of Navier-Stokes equations.

An O(h2), where h is the characteristic space step, numerical solver is combined

with an O(∆t4) time-step scheme, where ∆t is the time step, so that the finite dif-

ference solver’s convergence to zero divergence, can be measured along two axes.

Convergence to zero divergence is shown in Figure 1. Convergence of the finite dif-

ference solver as a function of step size, h, is shown on the left. Convergence as a

function of time step size, ∆t is shown on the right.

The left hand side of Figure 1 shows the finite difference solver has divergence

converging to zero with slope two as h gets smaller. Similarly, the right hand side

of Figure 1 shows the finite difference solver has divergence converging to zero with

slope four as ∆t gets smaller.

The value of Ri can be set to zero to get the standard Navier-Stokes equations.

A special case of Navier-Stokes is Taylor-Green vortices, and this special case has a

straight forward and closed form solution. Taylor-Green vortices are used to show

that the Boussinesq equations are accurate, at least when they are not forced by

temperature from an HEL propagating through the media.

The initial conditions for the problem are given by

u0 = A cos ax sin ay

v0 = B sin bx cos by,

for 0 ≤ x ≤ 2π, and 0 ≤ y ≤ 2π, and 0 = Aa+Bb [52].
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Figure 1. Left: plot of ∇ · u against spatial step size; h represents the spatial step size
in x and y. Right: Plot of ∇ ·u against time-step size; ∆t represents the time step size.
The y-axis is the divergence of the fluid flow as approximated with the finite difference
solver. The divergence is shown to illustrate the convergence of the forced Boussinesq
fluids solver. Divergence converging to zero is the equation ∇ · u = 0 converging to its
true value at O(h2), since the incompressibility equation is explicitly tied to the other
equations in the Boussinesq model (13), the system is converging at a rate O(h2) with
respect to space step, and at a rate O(∆t4) with respect to time.

Using A = a = b = 1 and B = −1 provides the Taylor-Green vortex solution [52]:

u = cos x sin ye−2νt

v = − sinx cos ye−2νt.
(17)

Equations (17) are used to check accuracy of the Boussinesq solver, of particular

interest is the time-convergence of the un-forced Boussinesq. The plot of the errors

are summarized in Figure 2.
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Figure 2. Error of Boussinesq equations without temperature forcing (setting the
temperature forcing to zero and setting the initial conditions to satisfy the Taylor-
Green vortex. Boussinesq is compared to Taylor-Green vortex. Left: The Boussinesq
model converges to the true solution at O(h2); error follows along the m = 2 reference
line showing the O(h2) convergence. Right: The Boussinesq model converges to the
true solution at O(∆t4); error follows along the m = 4 reference line showing the O(∆t4)
convergence. Error is ‖u∗ − u‖1, the norm of the true value against the solved values.

2.3 Paraxial Equation

In this section the Paraxial equations are derived from Maxwell’s equations

∇ · E = 0 (18a)

∇× E = −∂B
∂t

(18b)

∇ ·B = 0 (18c)

∇×B = µ0ε0
∂E

∂t
, (18d)

which relate electric fields, E, to magnetic fields, B. The constant ε0 is the electric

permittivity and the constant µ0 is the magnetic permeability.
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The derivation starts with Faraday’s Law. Take the curl on both sides of (18b):

∇× (∇× E) = ∇×
(
−∂B
∂t

)
,

and apply the identity ∇× (∇× E) = ∇(∇ · E)−∇2E

∇(∇ · E)−∇2E = −∂∇×B
∂t

= − ∂

∂t

(
µ0ε0

∂E

∂t

)
= −µ0ε0

∂2E

∂t2
.

Finally, use (18a) to write

−∇2E = −µ0ε0
∂2E

∂t2
. (19)

Equation (19) shares the general form of a wave equation, ∇2ψ = 1/v2ψtt, with

speed v traveling along the axis of propagation. Since our simulation deals with lasers,

which are light waves, v = c. When speed coefficients on (19) are equated with those

of the general wave equation, c =
1

√
µ0ε0

= 2.997× 108. Plugging this into (19):

∇2E =
1

c2

∂2E

∂t2
. (20)

Equation (20) ignores polarization effects including the fact that perpendicular

components of the wave do not interfere; this is not a problem since the simulation

uses a plane-wave. The laser simulation uses diffracting beams which do not spread

too fast - see Assumption 2. Pressure equalizes quickly and changes in gas density

are linearly related to changes in temperature [47].

A further simplification is to assume that ω, the temporal frequency, is constant.

As laser-beams are very directional the field can be written as

E = Ẽ(x, y, z)eiωt (21)
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where the plane wave is factored out. All of the temporal oscillations are covered in

eiωt. Ẽ(x, y, z) varies slowly which controls the diameter and strength of the beam as

it propagates.

Twice differentiating (21) with respect to t gives

∂2E

∂t2
= −ω2Ẽeiωt.

Substituting this is into (20) gives

c2∇2Ẽeiωt = −ω2Ẽeiωt. (22)

eiωt, the time dependency, cancels out and we define

η2k2 =
ω2

c2
,

where k is the spatial wave number and η = η0 + ε2η1 is the refractive index; η0 is the

initial refractive index and η1 is the changes in refractive index induced by the laser

beam’s interaction with the medium.

Then η and k are used in(22) to get the reduced wave equation:

η2k2Ẽ +∇2Ẽ = 0. (23)

Now the leading term of η is used in the expansion of (23):

Ẽ = A(εx, εy, ε2z)eikη0z, (24)

where eikη0z is the plane wave, slowly varying as indicated by its dependence on εx, εy,

and ε2z, and A is the amplitude of the wave. We use (23) in (24) to get the asymptotic
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expansion

ε
(
−k2η2

0Aeikη0z + k2η2
0Aeikη0z

)
+ ε2

(
2ikη0

∂A

∂z
+∇2A + 2η0η1k

2A

)
eikη0z = 0.

Clearly the O(ε) term is zero. That means that O(ε2) is the leading order and the

paraxial equation is given by:

(
2ikη0

∂

∂z
−∇2 + 2η0η1k

2

)
A = 0 (25)

Beam intensity from the Paraxial equation is used in the optical fluids solver.

Fluid temperature changes due to the laser affect the index of refraction in the laser

simulation. Refractive index is discussed in the following section.

Index of Refraction.

Temperature is not directly input into equation (25), but refractive index η is.

Some approaches to defining refractive index are discussed in this section.

Ciddor, in [53], provides a model for predicting refractivity of air based on inputs

of temperature, pressure, humidity, vapor pressure, and wavelength.

Pries, in [33], provides general rules of refractive, absorption and scattering index

values based on time of day and geographic location without providing specific values.

The rules are useful for determining reasonable ranges.

Sprangle and Peñano provide a set of values for absorption and scattering index

values for various environments in [54]. This is our primary source for choosing values

of βa and βs.

The Gladstone-Dale relationship gives

η1 = (1− η0)
ρ1

ρ0

,
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which relates the change in refractive index to the rate of density change [55]. But

the Boussinesq assumption means that density changes can be ignored in favor of

temperature. For optical frequencies the refractive index depends almost entirely on

temperature rather than density [56, 42]. Mathematically, this means

η1 = (1− η0)
T1

T0

, (26)

showing the relationship between the change in temperature to the change in refractive

index [40] used in the coupled laser-fluid simulation. (26) is used to update η1 in (6)

from temperature changes found using (13).

The exclusive reliance on temperature in (26) is useful for the current study, but it

may be useful to include medium characteristics and wavelength of energy in future

work. As a possible choice Andrews, in [1], relates pressure and temperature to

refractive index with

η(x) = 1 + 77.6× 10−6
(
1 + 7.52× 10−3λ−2

) P (x)

T (x)
,

where λ is the optical wavelength in µm and P (x) is the pressure at a point in space

and T (x) is a temperature at a point in space.

The refractive index model employed can can be left open to discussion since it

is not much work to change the refractive index function in the simulation. But (26)

is used in the simulations for this study, and the particulars of the simulation are

provided in the next section.

Simulating the Paraxial Equation.

For all studies in this dissertation the Paraxial Equation, (25), is simulated using

spectral methods. This section provides a discussion of the methodology.
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Let Â represent the Fourier transform of A and A

∧

the inverse Fourier transform

of A, then the solution of the Paraxial Equation is

−2iÂz + (−k2
1Â− k2

2Â) + η̂A = 0 (27)

an infinite system of ordinary differential equations in Â. To choose an ordinary

differential equation (ODE) solver write

dÂ

dz
= F (Â)

where

F (Â) = −ik2
1Â− ik2

2Â + η̂A.

The appropriate ODE solver is dictated by the eigenvalues, λ ∈ Λ(J), of J where

J =
∂F

∂Â
=
ik2

1 + ik2
2

2
+

∂

∂Â
iη̂A.

For a constant medium
ik2

1 + ik2
2

2
form a diagonal matrix, so finding the eigenvalues

is easy:

λj =
ik2

1 + ik2
2

2
+ iη0

for all j in the system. To find the eigenvalues of F , think of

G1 =
∂

∂Â
iη̂1A

as a perturbation of the eigenvalues, and so long as the perturbation is small the Ger-

schgoren Disc Theorem can be invoked. If G1 is small then the perturbed eigenvalues

are small. Therefore λj ∈ iR+O(G1) for all j. To ensure a stable numerical solution

to (27) select a step size to keep λj on the imaginary axis. In order to incorporate
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a large portion of the imaginary axis, and be explicit, Runge-Kutta (RK) family of

numerical solvers are elected to advance the solution through time; RK-6 gives a wide

range of spatial step sizes leading to stability in the numerical simulation. Figure 3

illustrates the stability region of for RK-6.

Assuming all quantities vary slower in the propagation direction, z, than in the

x, y directions justifies neglecting fluid velocities in the z-direction. An asymptotic

argument demonstrates this: Recall that (13) employs the forcing A(εx, εy, ε2z) from

(24). For initially quiescent medium, where u0 = 0, the scaling for A must be related

to the scaling for u(X, Y, Z). Specifically,

X =
1

ε
x, Y =

1

ε
y, Z =

1

ε2
z.

Defining

u(X, Y, Z) =


u(X, Y, Z)

v(X, Y, Z)

w(X, Y, Z)


then, by the chain rule, gives

∇ · u(X, Y, Z) =
1

ε
ux +

1

ε
vy +

1

ε2
wz = 0

Clearly as ε → 0 1/ε2 → ∞ much faster than 1/ε. Thus, via the conservation

equation, it is concluded

1

ε2
wz = 0.

At next order ∇ · u = 0, thus 1/ε (ux + vy) = 0, leaving wz = 0 again. So w must

be constant. The boundary conditions further constrain w = 0. Therefore the fluid

velocity in the z-direction can be neglected.

To simulate the refractive index evolving in the paraxial equation the simulation
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Figure 3. Plot of the stability region for Runge-Kutta sixth order numerical scheme
(RK-6). Inside the closed shapes the ODE is numerically stable. RK-6 includes a
large portion of the imaginary axis, therefore a large number of step sizes that ensure
numerical stability are available.

interpolates between temperature fields, from (13), in transverse 2-D time slices at

the start and end of the volume through which the laser is propagating. Convergence

of the interpolation method is covered in the in the next section. The complete

numerical scheme is covered in detail in Chapter III.

Convergence Analysis.

Linear interpolation is used between two-dimensional instances of fluid temper-

ature obtained from the Boussinesq approximation of the optical fluid. This gives

the laser intensity an O(dz2) convergence as the characteristic space step along the

propagation axis, dz, goes to zero over the propagation distance, L. Figure 4 shows

the convergence of Cauchy error between laser simulations with decreasing dz over

the whole propagation domain.

The optical fluid solver and the simulation of beam propagation need to be coupled

together. Tying the two models together relies on passing two-dimensional tempera-

35



www.manaraa.com

Figure 4. Plot of Cauchy error of Paraxial Simulation using interpolation; dz is the
interpolation cell width along the axis of beam propagation, the z axis. The y-axis
is the Cauchy error computed by taking the Euclidean norm of the difference of two
consecutive estimates. Circles denote error from linear interpolation between screens;
it is parallel to the m = 2 reference line showing that interpolation error converges
on O(dz2). Diamonds denote error from quadratic interpolation between screens; it is
parallel to the m = 3 reference line showing that the interpolation error converges on
O(dz3).

ture fields from the numerical fluid solver to the beam propagation simulation inter-

polates between temperature fields. The details of the coupled model are provided in

the next chapter.
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III. Coupling Laser-Fluid Model

This chapter describes the predictor-corrector scheme employed to couple the

optical fluid solver to the paraxial laser propagation simulation, illustrated in Figure

5.

Equations (25) and (13) are evolved together using a predictor corrector scheme

coupled to the spectral simulation of the paraxial laser propagation equation. A is

initialized with a Gaussian beam

A(x, y, 0) = e−x
2−y2 .

Temperature is initialized as T (x, y, z; 0) = 0, and velocity is initialized as u(x, y, z; 0) =

0. Laser beam intensity is passed to (13), where fluid temperature is evolved on trans-

verse two dimensional slices for a half time-step, ∆t/2, to get a predicted temperature.

The predicted temperature is then used in (25) to get a predicted intensity, which is

then used in (13) to get temperature as evolved over the full time-step, ∆t. This full

time temperature is finally used in (25) to get a corrected beam intensity over ∆z.

We advance time and space and begin again. This process is illustrated in Figure 5.

The initial conditions for the coupled solver are covered in the next section, and

the convergence of the entire simulation in Section 3.2.

3.1 Initial Conditions

We initialize the laser beam as a Gaussian beam with constant phase.

For the boundary conditions study in Chapter IV the fluid initial conditions are

u(x, 0) = 0 and T (x, 0) = 0.

The following section provides a convergence study for finite box boundary con-

ditions. Chapter IV is devoted to a boundary conditions study.
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Figure 5. Flowchart showing the relationship between the numerical solver for the
Boussinesq equations and the Paraxial equation. The whole cycle begins with the
introduction of A0 to the Boussinesq solver. The system iterates using A0 each time
since we require the source intensity for every time step.

3.2 Coupled Solver Convergence

Figure 6 shows Cauchy error of temperature on the left and intensity on the right.

Cauchy error is defined as ‖Tδτi−1
−Tδτi‖∞ for i = 2, 3, . . . , 5 where Tδτi is the temper-

ature approximated with the ith splitting time step, ∆τ , and Tδτi−1
is temperature

approximated using the previous splitting time step. Similarly the Cauchy error for

HEL intensity is ‖Tδτi−1
− Tδτi‖∞ for i = 2, 3, . . . , 5. Cauchy error of the approxi-

mation converges to zero at the same rate as the true error of the simulation using

decreasing splitting time steps.

38



www.manaraa.com

Figure 6. Left: Cauchy error convergence for intensity at Lz = 100 and over Tf = 0.3 for
decreasing coupled model splitting time step, ∆τ . Right: Cauchy error convergence for
temperature at Lz = 100 and over Tf = 0.3 for decreasing coupled model splitting time
step, ∆τ .

Boundary conditions are discussed in greater detail in the next chapter, but con-

vergence of the coupled laser-fluid model can be shown with finite box boundary

conditions. Where

v = 0;
∂u

∂y
= 0 on top and bottom,

u = 0;
∂v

∂x
= 0 on the sides,

for u = [u, v, 0], and the boundaries of the fluid temperature are zero flux, that is

Tx = Ty = 0 on the boundary.

The coupled laser-fluid solver is run over a propagation distance of Lz = 100 and

over time Tf = 0.3 with splitting time steps, ∆τ . Cauchy error of the temperature

and the intensity is measured for each ∆τ . The results are shown in Figure 6 for

decreasing outer time step ∆τ - the time over which (13) is evolved for each iteration.

Figure 6 shows that the predictor corrector method has O(∆τ 2) convergence. The
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effects of boundary conditions on the accuracy of the coupled laser-fluid model are

discussed in the following chapter.
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IV. Boundary Conditions

4.1 Introduction

Equation (13) is used to simulate fluid dynamics in free space - a physically un-

bounded domain. In order to simulate such a domain it is typical to artificially trun-

cate the domain to finite dimensions and apply open boundary conditions (OBC)

on the artificial boundary. OBC’s are a difficult problem [57, 58, 59]. Traction free

boundary conditions and radiation boundary conditions are two commonly applied

conditions to simulate OBC’s [60, 61, 62, 63, 57, 64, 65, 66, 67, 58, 68, 69, 70, 71].

At high Reynolds numbers (Re = 300 to 400) back-flow instabilities develop and

cause numerical simulations to blow up under these boundary conditions [72]. Tay-

lor, Rance and Medwell present a methodology for implementing traction boundary

conditions that overcome back-flow instabilities, but the method fails when distur-

bances develop upstream from the outflow boundary [73]. Prevalent methodology

has been to asymptotically increase a large finite boundary box to give the vortices

time and space to dissipate before reaching the box’s edge. This becomes problematic

as the Reynolds number increases so does the required size of the box until compu-

tation time balloons beyond control [59]. We can make computational costs more

tractable by imposing periodic boundary conditions and applying spectral methods

to numerically solve NSE [49]. These are not physically representative, though.

OBC’s have been developed in order to allow for smaller domains without worrying

about back-flow instabilities. These typically fall under two categories: one-sided

differencing and Newtonian damping, or sponge layer, at the boundary. One-sided

differencing methods were popular in the 1960’s, but it has been shown that they

develop reflections and instabilities when large disturbances were analyzed. Absorbing

layers has been very popular and used in analyzing small scale flows, but produce
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reflections due to variations of viscosity on the boundary. In the past Newtonian

damping has been used to force the solution to a known boundary condition, but

waves traveling tangential to the boundary tend to be distorted by spatial variations

or damping [67]. Current developments to address issues of reflection at the boundary

require either the boundary conditions to be known, or for the solver to approximate

their value [63, 60, 74, 68, 62, 75, 76]. Perfectly matched layers have been used to

successfully reduce reflection at the artificial outflow boundary [69, 77, 78, 70, 72,

59]. But absorbing boundaries and perfectly matched layers methods fail to address

disturbance that develop at the boundary and reenter the domain.

In [16] Fornberg outlines a method for addressing open boundaries that is accu-

rate for high Reynolds numbers (up to 600). Implementation of Fornberg’s method is

described in Section 4.2; it is further compared to periodic boundary conditions and

finite box boundary conditions. Nataf, in [79], compares a similar method to Forn-

berg’s, but did not provide rigorous analysis of the method spelled out in [16, 80].

The remainder of the section is organized as follows. Formulation of the problem

with an explanation of the laser-fluid numerical method is laid out in Section 4.2.

Then in Section 4.3 numerical simulation results are provided. Section 4.4 presents

conclusions of the boundary condition study.

4.2 Formulation

Non-dimensionalized Navier-Stokes equations, (13), are used to dynamically model

fluid-beam interaction with a forcing expression for temperature driven by HEL beam

intensity, A, given by the paraxial or, Schrödinger’s equation (25). For the boundary

conditions study (13) is changed to stream-function vorticity form.

To transform (13) into stream-function vorticity form the curl of (13a) and (13c)
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is taken

∇× [ut + (u · ∇)u] = ∇×
(
∇P +

1

Re
∇2u +RiTe2

)
(28)

∇× (∇ · u) = 0. (29)

(13b) can be handled with a substitution so it will be addressed at the end of the

derivation. Vorticity, ω, is defined as ω = ∇× u where u = [u, v, 0]′, so that

∇× u =


0

0

vx − uy

 .

This suggests that we need only consider the third component of vorticity, ω = vx−uy,

as a scalar. The following simplifications are made for the terms of (28):

∇× ut = ωt,

∇× (∇P ) = 0,

1

Re
∇×∇2u =

1

Re
∇2(∇× u) =

1

Re
∇2ω,

∇×RiTe2 = −RiTxe2.

A more involved series of substitutions and simplifications are required for the non-

linear term of (28), ∇× [(u · ∇)u]; specifically the identity

(u · ∇)u = (∇× u)× u +∇
(

1

2
u · u

)

is required, into which vorticity is substituted to give

(u · ∇)u = ω × u +∇
(

1

2
u · u

)
; (30)
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(30) is substituted into ∇× [(u · ∇)u] to yeild

∇× [(u · ∇)u] = ∇×
[
ω × u +∇

(
1

2
u · u

)]

= ∇× (ω × u) +∇×
(
∇
[

1

2
u · u

])
= ∇× (ω × u)

by the product rule. Now applying the divergence free condition (13c) gives

∇× [(u · ∇)u] = ∇× (ω × u) = (u · ∇)ω.

Substituting all of these simplifications into (28) gives

ωt + (u · ∇)ω =
1

Re
∇2ω −RiTxe2. (31)

The stream function, ψ, is defined so that u = ψy and v = −ψx. That is ψ is defined

with a path integral on a path, p, over which ψ is path independent

ψ =

∫
p

udy − vdx. (32)

This means that ux = −vy is written ux + vy = ∇ · u = 0, making it unnecessary to

carry (29) since the definition of ψ in (32) ensures zero divergence.

Substituting (32) into (31) and (13b) completes the derivation of the stream-

function vorticity form of (13)

ωt +

(
ψx

∂

∂y
− ψy

∂

∂x

)
ω =

1

Re
∇2ω −RiTxe2 (33a)

Tt +

(
ψx

∂

∂y
− ψy

∂

∂x

)
T =

1

Pe
∇2T + St|A|2. (33b)
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Figure 7. Initial beam profile for the laser-fluid coupled solver.

Note that (25) uses η1 = (1−η0)T/T0, the absorptivity coefficient, which depends

on the fluid temperature output from (33).

Equations (33) and (25) are evolved together using a predictor-corrector scheme

coupled to the spectral simulation of (25). A is initialized with a Gaussian beam

A(x, y, 0) = e−x
2−x2 .

Temperature is initialized as T (x, y, z; 0) = 0, and velocity is initialized as u(x, y, z; 0) =

0; therefore ω = ψ = 0, as in Figure 7.

Intensity is passed to (25), where it is evolved on two dimensional transverse slices

for a half time-step, ∆t/2, to get a predicted temperature. The predicted temperature

is then evolved for a full space step, ∆t, in (25) to get a predicted intensity, which

is then used in (33) to get temperature as evolved over a full time-step, ∆t. This

temperature at ∆t is finally used in (25) to get a corrected beam intensity over the

volume of propagation distance ∆z. Time and space a steps are advanced and the

45



www.manaraa.com

cycle begins again. This process is illustrated in Figure 5.

Three approaches to modeling free space boundary conditions for laser beam-fluid

interaction are discussed:

1. Periodic boundary conditions

u(x + L, t) = u(x, t)

T (x + L, t) = T (x, t)

P (x + L, t) = P (x, t)

2. Slip boundary conditions in a finite box

v = 0;
∂u

∂y
= 0 on top and bottom

u = 0;
∂v

∂x
= 0 on the sides

∂T

∂x
= 0;

∂T

∂y
= 0

P = v
∂u

∂y
= 0 on top and bottom

P = u
∂v

∂x
= 0 on the sides

3. Fornberg’s open boundary (FOB) conditions taken from [16]

L ΨE = ΨI

∂T

∂x
= 0;

∂T

∂y
= 0

Periodic boundary conditions use a spectral solver to numerically solve (33) to
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reduce the impact on computation time of increase the size of the period on the

bounds. Implementation of periodic boundary conditions follow the methodology

laid out by Akers and Reeger in [49]. The Fast Fourier transform allows for faster

computations, but periodic boundary conditions are not physical. Periodic boundary

conditions essentially assume an infinite array of beam intensity spots, or a torus

shaped domain. Fluid heated by the beam convects vertically to the top of the

period and continues through the bottom of the period creating errors in the fluid

simulation.

Slip boundary conditions and free-space boundary conditions are implemented

with finite difference methods. Second-order up-winding is applied to approximate

the nonlinear terms in (33a) and (33b), using the method from [48]. Linear terms are

updated via second-order finite-differencing methods and ψ is updated in (33a) by

∇2ψ = ω (34)

using a Poisson’s equation solver similar to pressure correction schemes. The finite

box boundary conditions, although physical, may not be the boundary conditions

needed for this problem.

The focus of this study is on FOB conditions. In this work FOB conditions are

implemented with a finite difference scheme.

The system (33) is stated in stream-function vorticity form so that localization of

vorticity can be exploited. In the free-space laser-fluid problem, ψ → 0 more slowly

than ω → 0 as ‖x‖ → ∞. The slow decay rate of psi is based on the fundamental

solution to (36), which is Ψ(‖x‖2) = ln(‖x‖2) in two-dimensions. The faster decay

rate, i.e. exponential decay, of ω is based on observations [80].

A finite sub-domain, ΩF , is defined in the infinite domain. Taking advantage of

the fact that ω decays quickly ΩF is chosen so that ∆ψ is approximately zero on the

47



www.manaraa.com

Figure 8. Cartoon of FOB conditions showing ω → 0 quickly and ψ → 0 slowly as x→∞.
Note the finite domain where ω 6= 0 is localized, shown by the dotted line. The solid line
denotes the finite sub-domain where open boundary conditions-informed fluid behavior
is approximated.

boundary of ΩF . This is illustrated in Figure 8 by the solid rectangle.

N points, XE, are chosen on the exterior of ΩF so that ∇2ψ(XE) is approximately

zero, where ψ(XE) is the stream-function evaluated at the points of XE. N more

points are chosen, XI , from the interior of ΩF . Selecting N points for XI requires a

choice at the four corners of XI in order to get the points of XE and XI to closely

line up. The points of vectors XE and XI are illustrated in Figure 9.

It is essential for XE and XI to have the same number of points so that a linear

relation can be defined as

L ψ(XE) = ψ(XI), (35)

where L is the linear relation and ψ(XI) is the stream-function evaluated at the

points of XI .
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Figure 9. Illustration of grid points selected about the finite sub-domain at which we
make our approximation. © denotes XE, F denotes XI and + denotes XC . The set XC

is defined by taking a fractional number of ∆x sized steps into the finite domain. The
dashed arrows illustrate the directional vector ni used in defining the basis function.

An additional N points, XC , are defined as a scaling of XE so that XC lies further

interior to ΩF than XI . This is shown in Figure 9. XC is defined as

XC =
L− ah
L

XE,

where L is the length of the virtual bound on a side, h is grid spacing, and a is an

ad hoc value describing the number of steps into the virtual bound we take as a ratio

of virtual bound size. It works best if XI > XC for all values, however the optimal a
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has to be recovered by trial and error.

The points of XC are used to center the basis functions, Ψ . Since ∇2ψ is ap-

proximately zero at the boundary of ΩF we select as basis functions the fundamental

solution to

∇2Ψ = δ(‖x−XC‖2), (36)

where δ is the Dirac delta function, can be described with its fundamental solution

for two dimensions Ψ(‖x‖2) = ln(‖x‖2). Unfortunately the fundamental solution is

not localized.

In order to get a greater decay rate for the basis functions the directional derivative

of Ψ is used as the basis function. Since ∇2Ψ = 0 ∀ x 6= XC implies that ∇2 ∂

∂n
Ψ = 0

∀ x 6= XC , using a basis defined by
∂

∂n
Ψ satisfies ∇2ψ ≈ 0 on the boundary of ΩF .

Basis functions are defined as

∂Ψj
∂nj

(xi) =
∂ψ(xi −XC)

∂nj
,

where Ψ is the fundamental solution to (36). Directional derivatives use the direction

vector

nj =
xEj − xCj
‖xEj − xCj‖2

.

Basis functions are explicitly computed as

∂Ψj
∂nj

(xi) = nj ·

 x−xCj
(x−xCj )2+(y−yCj )2

y−yCj
(x−xCj )2+(y−yCj )2

 ,

where (xCj , yCj) ∈ XC for j = 1, . . . , N . Figure 10 shows that
∂Ψj
∂nj

decays quickly to

zero for x 6= XC .
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Figure 10. Mesh plot of the basis function
∂Ψj

∂nj
(xi). Note the rapid decay of the function

for x further from XC .

Applying the set of basis functions to (35) gives

L

[
∂Ψj
∂nj

(XE)

]
=

[
∂Ψj
∂nj

(XI)

]
.

Defining

ΨI =

[
∂Ψ1

∂n1

(xIi),
∂Ψ2

∂n2

(xIi), . . .
∂ΨN−2

∂n1

(xIN−2
)

]
; i = 1, 2, . . . , N − 2

and

ΨE =

[
∂Ψ1

∂n1

(xEi),
∂Ψ2

∂n2

(xEi), . . .
∂ΨN−2

∂n1

(xEN−2
)

]
; i = 1, 2, . . . , N − 2

allows (35) to be rewritten as

L ΨE = ΨI . (37)

Figure 11 shows a plot of the N ×N matrix ΨE. The selected basis functions ensure
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that ΨE is diagonal dominant, therefore ΨE is invertible.

The relation L is found by inverting ΨE and multiplying the inverse on both sides

to get

L = ΨIΨ
−1
E .

Figure 12 shows the matrix system used to approximate the solution to ∇2ψ = ω.

In the numerical scheme ω is numerically updated before ψ is updated so the system

in Figure 12 is solved by inverting the matrix on the left of the figure. L is used in

the bottom left corner of the matrix depicted in Figure 12 as an (N − 2) × (N − 2)

separated system. The boundary solution scheme calls only points on the boundary

of the ΩF collected in the sub-matrix in the bottom left of the matrix in Figure 12.

The bottom two sub matrices approximate the solution to ∇2ψ = ω on the boundary

of ΩF .

The sub-matrix in the top left of the matrix refers to the points on the interior of

ΩF in order to solve ∇2ψ = ω on the interior of ΩF . The scheme uses a second order

centered difference scheme defined as

ωi,j =
ψi−1,j − 2ψi,j + ψi+1,j

∆x2
+
ψi,j−1 − 2ψi,j + ψi,j+1

∆y2
.

The scheme references points on the boundary of ΩF shown in the sub-matrix on the

top right of the matrix in Figure 12.

Handling the boundary conditions in this way simulates the fluid convection ex-

iting the finite sub-domain without reflection as well as the fluid wrapping back into

the finite sub-domain. Stream-function back-flow is allowed by the FOB conditions,

but no back-flow is allowed in vorticity. We show this in Figure 13, a plot of a fluid

temperature heated by a constant beam intensity at the laser source for full time.

Therefore the size of ΩF should be selected to ensure for vorticity to decay to zero at
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Figure 11. Mesh plot of ΨE, the N points of XE evaluated on the N basis functions
∂Ψj

∂nj
(xi). The selected basis functions makes the matrix ΨE diagonal dominant, and

therefore invertible. So that the linear relation (37) can be solved.

the boundary.

Asymptotic analysis of the boundary conditions is provided in the next section.
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Figure 12. Matrix formulation of numerical method for solving ∇2ψ = ω utilizing L
as an (N − 2) × (N − 2) separated system for the boundary of finite sub-domain. The
right-hand matrix is inverted to update ψ. L and the bottom left sub-matrix constitute
a sub-system for solving ∇2ψ on the boundary of the finite sub-domain. The interior
of the sub-domain is solved by the top two sub-matrices.

4.3 Numerical Results

Figure 14 shows the temperature color map for the finite box, periodic and FOB

boundary conditions from left to right. The three boundary conditions are shown

for increasing boundary sizes to illustrate that the fluid temperature approximation

appears to be converging to similar solutions.

Tests for convergence of the boundary conditions assume that fluid temperature

and beam intensity will converge as the domain size approaches infinity. Assume a

square domain beginning with length L = 2π on each side of the domain, and increase

the domain size while maintaining a fixed space step of h = 0.05. Fourier methods are

faster when the number of grid points is a power of 2, so L is incremented by doubling
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Figure 13. Temperature colormap with fluid stream lines illustrating the fluid velocity
leading out of the finite sub-domain – back-flow of the stream function is allowed.

it in each iteration. The free space boundary conditions and finite box boundaries are

more flexible in the number of points, but there are limits on storage constraints with

respect to how many points can be used for the grid. The Finite difference boundaries

are incremented by 20h and are limited to L = 2π + 100h.

Cauchy error was taken between consecutive domain lengths. Temperature results,

shown on the right of Figure 15, were taken at laser source. Intensity results, shown

on the left of Figure 15, were taken at a distance of 100 units from the laser source.

FOB has the fastest convergence at a rate of O(L−4); indeed both of the “correct”

boundary conditions perform better than the periodic boundary conditions. Con-

vergence performance must be weighed against the computation costs of the finite

difference methods employed for FOB and finite box conditions. Computation times

are compared in Figure 16.

Computation times are taken for a fixed domain size while number of grid points

are increased on the left of Figure 16. To capture the tradeoff between forcing down

error and ballooning computation costs computation time is plotted as a function of

55



www.manaraa.com

Cauchy error on the right hand side of Figure 16. Simulation time experiments were

performed on a Mac Pro with 3.5 Ghz 6-core Intel Xeon E5 Processor.
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FOB takes the longest to compute. This is due to the special construction of the

solver matrix as well as the necessity of inverting an additional matrix. A fast iterative

solver like Matlab’s GMRES function was not tested for the finite difference methods

since for finite box boundary conditions pre-inverting the matrix and multiplication

at each iteration was the same cost as applying GMRES at each iteration; Moreover

FOB requires a matrix that does not lend itself well to GMRES.
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4.4 Conclusion

Periodic boundary conditions, finite box boundary conditions and FOB were com-

pared. While FOB has the fastest convergence of the boundary conditions evaluated,

it can become prohibitively expensive to run for large domains or high resolution.

Periodic boundary conditions allow for Fourier methods which are just too fast

too ignore. Error can always be brought down with larger domain sizes and higher

resolution with only slightly higher time costs. Thus, periodic boundary conditions

are selected in Chapter V as boundary conditions for the numerical fluid solver.

It should be noted, however, that the comparison between the finite box boundary

conditions and the periodic boundary conditions is not quite fair. If periodic boundary

conditions were evaluated with the finite difference solver, the diamond line in the

right hand side of Figure 16 would have the same slope as the line for finite box

computation times versus error.
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Figure 14. From left to right, the color maps shows fluid temperature approximations
using finite box boundary conditions, periodic boundary conditions and FOB boundary
conditions. Top row shows the results for L, domain length for a square domain, equal

to 2π. Second row shows results for L =
5

2
π. Third row shows results for L = 3π. The

numerical approximations using the three boundary conditions appear to converge to
similar solutions as L increases. 59
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Figure 15. Left: convergence results for temperature at laser source in a square domain
with side length L. Right: convergence results for intensity at distance 100 in a square
domain with side length L. Error is Cauchy error measured between domain length
iterations.

Figure 16. Left: computation times as a function of number of grid points in the
domain, N , using fixed square domain size with length on a side L = 2π + 1 while
number of points is increased by powers of 2. Right: computation times as a function
of Cauchy error measured for varying domain size, L; note that the Error axis is flipped
so that error decreases from left to right. Simulation timing was performed on a Mac
Pro with 3.5 Ghz 6-core Intel Xeon E5 Processor.
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V. Scintillation

5.1 Introduction

Scintillation arises from variations in intensity of a light source caused by phase

distortions throughout space between the light source and the observer [81]. Phase

distortions can be considered as atmospheric turbulence. Scintillation encompasses

variations in time with respect to received irradiance [1]. This chapter is concerned

with the temporal variation in received irradiance.

Scintillation is an essential part of the fluid-beam interaction. In addition, small

amplitude changes exist independent of the laser, these cause scintillation. It is

characterized by changes in the refractive index of the medium; these changes are

caused almost exclusively by fluctuations in temperature [42, 56] as noted in the

discussion of the refractive index in Section 2.3.

The small scale structure of the temperature distribution directly affects the scat-

tering of the HEL beam [82], degrading the quality of electromagnetic beams in optical

communications [42].

In this section we introduce a coupled solver which incorporates scintillation in

order to simulate fluid-beam interaction, including small scale turbulence from both

initial phase distortions in the temperature field and distortions induced by HEL

beam heating.

Scintillation is incorporated asymptotically into the coupled fluid-beam model

using a hybrid volumetric, phase screen methodology.

Generation and application of phase screens is a well documented area of research.

Methods have been developed for efficiently generating phase screens [83, 84, 85, 86].

Several methods for creating highly accurate phase screens have been developed [28,

87, 88, 89, 90, 91, 92, 93, 94]. There are also several methods generating phase screens
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with respect to structure functions [95], or thickness [96, 97] allowing for analysis of

temporal phenomenon in laser beam propagation. None of these methods account for

fluid heating effects on the beam intensity as well as the temperature phase.

Phase screens are generated by applying the Fast-Fourier transform (FFT) method,

or spectral method, first set forth as a Fourier transform method in [98], and detailed

as a FFT method in [99]. Lane et al. in [90] and Frehlich in [28] provide an improve-

ment by accounting for subharmonics, thus incorporating lower spatial frequencies

[39]. The covariance matrix method [83], while more accurate, requires computa-

tional costs too great for our iterative approach. In contrast to [84] and [96] the

volumetric approach is applied with 2-D temperature screens evolved to proportional

time-steps, as in the quiescent case, to account for temporal phenomena. To han-

dle scintillation initial random temperature phase screens are simulated in linearized

Boussinesq equations. This allows for a dynamic update of the beam intensity as the

fluid is heated and convects over time. The details of this method are discussed in

the following section.

5.2 Formulation

This section describes the asymptotic definition to incorporate scintillation ef-

fects into the fluid model (13). Recalling that initial conditions for the Boussinesq

equations are:

u(x, 0) = 0

T (x, 0) = T0,

P (x, 0) = 0
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where x =


x

y

z

.

Scintillation can, therefore, be described asymptotically by

u(x, 0) = 0 + δu1

T (x, 0) = T0 + δT1,

P (x, 0) = 0 + δP1

where δ → 0 so that it makes sense to write the solution as a power series

u(x, t) = u0 + δu1

T (x, t) = T0 + δT1

P (x, t) = P0 + δP1.

The terms u0(x, t), u1(x, t), T0(x, t), T1(x, t), P0(x, t) and P1(x, t) are all O(1).

Substituting the asymptotic expansions just defined into Boussinesq gives the O(1)

equations

∂u0

∂t
+ (u0 · ∇)u0 = ∇P0 +

1

Re
∇2u0 +

1

Fr2
T0e1

∂T0

∂t
+ (u0 · ∇)T0 =

1

Pe
∇2T0 + St|A|2.

Note that the convective derivatives have been explicitly spelled out since higher order

equations apply a product rule in the convective derivative as in the O(δ) expansion:

∂u1

∂t
+ (u0 · ∇)u1 + (u1 · ∇)u0 = ∇P1 +

1

Re
∇2u1 +

1

Fr2
T1
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∂T1

∂t
+ (u0 · ∇)T1 + (u1 · ∇)T0 =

1

Pe
∇2T1.

Initial data for the fluctuating term T1 is determined by turbulent spectra; in

order to satisfy the Boussinesq equations the turbulent spectra must be continuously

differentiable. Moreover T1 is an instance of a random process with power spectral

density (PSD) |φ(f)|2. The simplest method to generate a phase spectrum is the Fast

Fourier transform (FFT) method [90, 28, 39]:

T1 = φ(κ)eiθκ (38)

where θκ is a random number, and κ is the scalar spatial wave number.

The following section describes the process of generating phase screens to be used

as random turbulent spectra, T1.

Random Phase Screen Generation.

Selecting a PSD for generating a temperature phase screen allows for some flex-

ibility. Each PSD provides advantages of its own [100, 1]. Figure 17 shows a few

turbulent spectra, illustrating the behavior of the turbulence as a function of wave

number, κ.

A modified Von Kármán PSD was selected to generate T1

|φ(κ)|2 = 0.033C2
n

exp (−κ2/κ2
m)

(κ2 + κ2
0)

11/6
, for 0 ≤ κ <∞, (39)

where C2
n is the refractive index structure function, κm = 5.93/l0 and κ0 = 2π/L0; lo

is the inner scale and L0 is the outer scale of turbulence. Values of κm and κ0 are

selected to scale with the small-scale (high frequency) and large-scale (low frequency)

behavior of the spectrum as determined by dimensional analysis [39]. Modified Von
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Figure 17. Plot of several turbulent spectra drawn from [1] illustrating the range of
turbulent flow for an array of values of k; these spectra use m = 11/3 and C2

n = 10−14.

Kármán was chosen for its accuracy and since it is the simplest model to incorporate

inner-scale effects to the spectrum [100, 39].

The refractive index structure function, C2
n, is a measure of local turbulence

strength, which is frankly difficult to measure. There are measures with clearer mean-

ing that are easier to come by. Moreover, C2
n is a function of propagation distance

∆z so C2
n(z) can be used to compute atmospheric coherence diameter, r0. Schmidt,

in [39], transforms (39) to put it in terms of spatial frequency, r0

|φ(κ)|2 = 0.4933r
−5/3
0

exp (−κ2/κ2
m)

(κ2 + κ2
0)

11/6
. (40)

Phase screen generation is typically accomplished via weighted sums of basis

functions. The most common basis sets are Zernike polynomials and Fourier series.

The coupled laser-fluid solver already uses periodic boundary conditions therefore a

Fourier series basis set makes sense. We apply the FFT method laid out by Schmidt
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in [39], who bases his method on [98]. This method uses spatial frequency, f , rather

than spatial wave number κ. Therefore (40) is expressed in terms of f

|φ(f)|2 = 0.023r
−5/3
0

exp (−f 2/f 2
k )

(f 2 + f 2
0 )

11/6
, (41)

where f =
√
f 2
m + f 2

n, fn and fm are x and y-directed spatial frequencies, fk =

(11.84π)/l0 and f0 = 1/L0 [39].

Phase screens are generated on a finite grid expressing T1 as a Fourier series in a

2-dimensional plane expressing T1 as a function of space variables x and y.

T1(x, y) =
∞∑

n=−∞

∞∑
n=−∞

cn,me
i2π(fnx+fmy),

where cn,m are the Fourier-series coefficients [39] .

In general, the Fourier coefficients are complex; the real and imaginary parts of

cn,m have a Gaussian distribution with zero mean and equal variances with cross-

variances equal to zero [1, 29, 30, 31, 39]. The variance is given by

〈
|cn,m|2

〉
=

1

LxLy
|φ(f)|2 (42)

where Lx and Ly are the x and y grid sizes respectively [39].

To implement random realizations of the Fourier-coefficients we use Matlab’s

randn function which provides random draws from the standard, normal Gaussian

distribution. To transform the draws to the appropriate variance given in (42) multi-

ply the random number by
√

1
LxLy
|φ(f)|2) [39]. The variance of the result decays as

in (41).

The FFT method is not very accurate, and it has been shown in [28] that the

subharmonic method described in [90] produces accurate results [39]. Therefore the
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phase screen method in the scintillated coupled laser-fluid solver adds a subharmonics

correction as in[39].

The next section describes how random phase screens are employed in the scintil-

lated coupled solver.

Scintillation Model.

In order to incorporate scintillation into the coupled solver initialize T0(x, y, z) = 0.

T1(x, y, z) is initialized using the FFT method described in the previous section. A

random realization of a temperature screen is shown in Figure 18. For each of T0 and

T1 this process generates an independent array of Nz 2-dimensional arrays, where

Nz = Lz/∆z for propagation distance Lz.

The beam is evolved volumetrically as before using the Paraxial equation with

η1(T0) determining the refractive index. The beam profile is initialized with a Gaus-

sian beam profile A0(x, y) = e−x
2−y2 . The beam is still evolved via linear interpolation

by taking two-dimensional instances of T0 two at a time. That is, the volumetric beam

evolution of the Paraxial equation does not rely on phase screen creation; intensity At

is output from the paraxial simulation. Scintillation is introduced as a phase screen

at the end of each step in space, ∆z, by

At2(z + ∆z) = At(z) exp (iδT1(z)) .

Treating T as a constant we show the impact of δ on the beam intensity spot. As

δ increases the beam spot appears more broken up into spots of higher, concentrated

intensity and areas of lower intensity diffused throughout the spot. The Paraxial beam

simulation was run at a distance of 800 and varied δ with constant fluid temperature.

HEL beam intensity spots for varying δ are show in Figure 19. Since average intensity

is conserved, maximum intensity actually increases as δ increases, the concentrated
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Figure 18. To illustrate T0(x, 0) we show a random realization of a temperature phase
screen. Generated via modified von Karman as described in Chapter V.

high intensity spots must reach higher values as lower intensity areas in the beam

become more widespread.

Our coupled beam-fluid solver generates a constant fluid temperature initial beam

profile in order to initialize the fluid solver. This intensity is passed to the linearized

fluid solver.

Fluid velocity is initialized with u0 = u1 = 0; for fluid boundary conditions

periodic boundary conditions are chosen for speed and resolution advantages. Periodic

boundary conditions allow fast Fourier methods so that large numbers of points can

be used to get higher resolution and lower error with a smaller computation cost.

At each slice the fluid is now evolved by linearized Boussinesq equations

∂u0

∂t
+ (u0 · ∇)u0 = ∇P0 +

1

Re
∇2u0 +

1

Fr2
T0e1 (43a)

∂T0

∂t
+ (u0 · ∇)T0 =

1

Pe
∇2T0 + St|A|2 (43b)
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Figure 19. Top Row: Intensity beam spot with constant fluid temperature and δ =
{0, 0.01, 0.05}. Bottom Row: Intensity beam spot with constant fluid temperature, over
propagation distance Lz = 800, using 20 screens and δ = {0.1, 0.05, 1}. Scintillation
impact on beam spot becomes clear for δ ≥ 0.05. Average intensity is preserved, we can
therefore observe maximum beam intensity increase as δ increases.

∇ · u0 = 0. (43c)

∂u1

∂t
+ (u0 · ∇)u1 + (u1 · ∇)u0 = ∇P1 +

1

Re
∇2u1 +

1

Fr2
T1 (43d)

∂T1

∂t
+ (u0 · ∇)T1 + (u1 · ∇)T0 =

1

Pe
∇2T1 (43e)

∇ · u1 = 0. (43f)

The linearized optical fluid equations, (43), are numerically solved in Fourier space

evolving through time using Runge-Kutta 4. A pressure correction scheme is applied

a la [49]. The fluctuating small-scale variables u1, T1, P1 are forced by, and evolved

along with, the base flow large-scale variables u0, T0, P0.
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To evolve the fluid and beam together over a distance, Lz and over a time, t the

predictor-corrector method is applied once again in the scintillated fluid-beam solver.

Specifically the linearized fluid solver is first evolved for only a half time step in order

to get a predicted fluid temperature fields, T0,∆t/2 and T1,∆t/2. T0,∆t/2 is used in the

Paraxial solver to evolve the beam through all of Lz volumetrically. T1,∆t/2 is used

as the phase screen to incorporate scintillation. The resulting intensity is used in

the linearized fluid solver to provide corrected fluid temperature fields for the full

time step, T0,∆t and T1,∆t, which is used to correct the beam intensity in the Paraxial

solver. T0,∆t is used in the Paraxial solver to evolve the beam through all of Lz

volumetrically. T1,∆t is used as the phase screen to incorporate scintillation.

Results for various δ values are provided in the next section.

5.3 Results

Figure 20 shows stills from a video taken by Wick and Lloyd [2], and is provided

as a point of comparison for the reader. The effects of convection induced by laser

heating are illustrated in Figure 20. The beam spot deforms to a crescent, and is

displaced by heating from the laser changing the index of refraction. Heating further

induces scintillation which can be seen in the dark spots traveling through the laser

spot as well as the overall blurring of the spot.

Simulations of scintillation show similar behavior in the simulated laser beam spot.

The top row of Figure 21 shows three time slices evolved in the coupled laser-fluid

solver with scintillation scaling factor δ = 10−6. The bottom row of Figure 21 shows

fluid temperature evolved with the same settings. The non-dimensional constants are

set to St = 1
3
, Ri = 6×105, Re = 1000, and Pe = 1000. The laser is propagated over

Lz = 800 for time Tf = 0.6.

Using the velocity and temperature values from the scintillated fluid-beam solver
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Figure 20. Still from a video of a 2.5 kW laser beam spot over path length 36”, taken
by Wick and Lloyd [2], propagated through smoke from burning oil and rubber. Stills
taken, from left to right, at t = 0 sec, t = 6 sec and t = 55 sec. The effect of convection
on the laser spot is clear from the crescent that forms in the beam spot, and the beam
spot displacement. Scintillation is shown in the dark spots and the blurring of the laser
spot

in (3) gives C2
T = 1.38 × 10−9m−2/3. And using this C2

T in (2) gives C2
n = 1.22 ×

10−16m−2/3.

The scale factor in Figure 21 is too small to make an impact on the intensity spot.

The beam deformation from convection is visible by t = 0.2.

The bottom row in Figure 21 shows the fluid temperature. The scale factor is too

small to make an impact on the fluid temperature. The heated spot from the laser is

visibly blooming by t = 0.6.

The top row of Figure 22 shows three time slices evolved in the coupled laser-fluid

solver with scintillation scaling factor δ = 0.001. The bottom row Figure 22 shows

fluid temperature evolved with the same settings. The non-dimensional constants are

set to St = 1
3
, Ri = 6×105, Re = 1000, and Pe = 1000. The laser is propagated over

Lz = 800 for time Tf = 0.6.

Using the velocity and temperature values from the scintillated fluid-beam solver

in (3) gives C2
T = 1.45 × 10−7m−2/3. And using this C2

T in (2) gives C2
n = 1.27 ×

10−14m−2/3.

The scale factor in Figure 22 introduces small scintillation to the beam spot. The
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Figure 21. Top: Laser intensity beam spot generated by coupled laser-fluid solver with
δ = 10−6. From left to right the spot is shown at t = 0.0125, t = 0.2, t = 0.6 Bottom:
Fluid temperature spot generated by coupled laser-fluid solver with δ = 10−6. From
left to right the spot is shown at t = 0.0125, t = 0.2, t = 0.6. Refractive index structure
parameter value for this simulation is C2

n = 1.22× 10−16m−2/3

deformation of the beam spot is still visible. Slight blurring is visible with some lower

intensity spots mixing into high intensity regions of the beam. The beam deformation

from convection is visible by t = 0.2.

The bottom row of Figure 22 shows the corresponding fluid temperature. corre-

sponding to the regime used to generate Figure 22. Fluid temperature is not affected

by δ until t = 0.6, and then only small temperature differences are visible within the

temperature spot.

The top row of Figure 23 shows three time slices evolved in the coupled laser-fluid

solver with scintillation scaling factor δ = 0.01. The bottom row of Figure 23 shows

fluid temperature evolved with the same settings. The non-dimensional constants are
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Figure 22. Top: Laser intensity beam spot generated by coupled laser-fluid solver with
δ = 10−3. From left to right the spot is shown at t = 0.0125, t = 0.2, t = 0.6 Bottom:
Fluid temperature spot generated by coupled laser-fluid solver with δ = 10−3. From
left to right the spot is shown at t = 0.0125, t = 0.2, t = 0.6. Refractive index structure
parameter value for this simulation is C2

n = 1.27× 10−14m−2/3

set to St = 1
3
, Ri = 6×105, Re = 1000, and Pe = 1000. The laser is propagated over

Lz = 800 for time Tf = 0.6.

Using the velocity and temperature values from the scintillated fluid-beam solver

in (3) gives C2
T = 7.73 × 10−4m−2/3. And using this C2

T in (2) gives C2
n = 6.79 ×

10−11m−2/3.

The value of δ = 0.01 shows a strong influence of scintillation on the beam intensity

spot. Definite spreading in the intensity is clear throughout the images in Figure 23.

Deformation of the intensity spot due to self-induced convection is still visible by

t = 0.2.

The bottom row of Figure 23 shows the corresponding fluid temperature. The
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Figure 23. Top: Laser intensity beam spot generated by coupled laser-fluid solver with
δ = 0.01. From left to right the spot is shown at t = 0.0125, t = 0.2, t = 0.6 Bottom:
Fluid temperature spot generated by coupled laser-fluid solver with δ = 0.01. From
left to right the spot is shown at t = 0.0125, t = 0.2, t = 0.6. Refractive index structure
parameter value for this simulation is C2

n = 6.79× 10−11m−2/3

fluid temperature spot still has a similar shape in Figure 23 as the much lower δ

shown in Figure 21. Though some spots of lower temperature are peppered through

the temperature bloom.

The top row of Figure 24 shows three time slices evolved in the coupled laser-fluid

solver with scintillation scaling factor δ = 0.06. The bottom row of Figure 23 shows

fluid temperature evolved with the same settings. The non-dimensional constants are

set to St = 1
3
, Ri = 6×105, Re = 1000, and Pe = 1000. The laser is propagated over

Lz = 800 for time Tf = 0.6.

Using the velocity and temperature values from the scintillated fluid-beam solver

in (3) gives C2
T = 0.0079m−2/3. And using this C2

T in (2) gives C2
n = 6.91×10−10m−2/3.
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Figure 24. Top: Laser intensity beam spot generated by coupled laser-fluid solver with
δ = 0.06. From left to right the spot is shown at t = 0.0125, t = 0.2, t = 0.6 Bottom:
Fluid temperature spot generated by coupled laser-fluid solver with δ = 0.06. From
left to right the spot is shown at t = 0.0125, t = 0.2, t = 0.6. Refractive index structure
parameter value for this simulation is C2

n = 6.91× 10−10m−2/3

With δ = 0.06 the scintillation overpowers convective effects on the beam intensity,

as shown in Figure 24. The beam intensity shows ringing at t = 0.2 and by full

time the beam spot shows fading but not much in the way of deformation as in less

scintillated regimes.

The bottom row of Figure 24 shows the fluid temperature. Thermal blooming is

less pronounced in Figure 24. With δ = 0.06 some convection can be observed in a

more diffuse low temperature spot. The temperature is spot is spread out with lower

temperature on the outside of the spot with a concentrated high temperature spot in

the middle.
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The impact of the scintillation scale factor has been well demonstrated by the

numerical results. Time constraints make a thorough study of the role of δ in scin-

tillation difficult. Future work will involve obtaining video of lasers similar to the

one shown in Figure 20. Comparing intensity spots in Figure 20 to simulated inten-

sity spots in Figures 22 and 23 suggests that δ for Wick and Lloyd’s experiment lies

somewhere in the interval (10−3, 10−2). However the parameters of the experiment

are necessary in order to describe the relationship between δ and parameters such as

turbulence scale.
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VI. Conclusions

A novel method for numerically modeling laser induced convection in its carry-

ing medium was developed. Beam propagation was simulated volumetrically with

FFT methods, and used interpolation between two-dimensional transverse tempera-

ture instances. Fluid dynamics were simulated with a predictor-corrector scheme, the

Boussinesq model uses beam intensity from the Paraxial simulation to force temper-

ature.

Boundary conditions for the free space problem were examined. The boundary

conditions study provided a novel analysis of FOB. FOB provides an accurate, if

costly, method for modeling laser propagation in an open environment. Imposing

periodic boundary conditions is not as accurate, but access to FFT gives advantages

in computation costs and allows for increased resolution in a reasonable amount of

time. Therefore periodic boundary conditions were implemented in the scintillated

coupled laser-fluid solver.

Scintillation was included in the coupled solver using a hybrid volumetric and

phase-screen method. This is a computationally tractable method that allows inclu-

sion of scintillation initially present in the media as well as dynamics. Asymptotically

incorporating scintillation on intensity was shown to create distortion in the beam

intensity. Behavior of the coupled solver was shown to parallel behavior of a laser

experiment photographed by Wick and Lloyd. Comparison between the video and

simulated intensity spots suggests that that δ for the experiment by Wick and Lloyd

lies somewhere in the interval (10−3, 10−2). As scintillation was increased relative to

laser power the turbulence of the fluid overcame the beam heating effects; the crescent

shaped beam spot became, once more, a granular circular spot.

Future efforts in modeling scintillation in the coupled solver will focus on finding a

relationship between the scintillation scaling factor δ and parameters like turbulence
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scales. This can be accomplished by matching numerical results to experiments with

known beam and atmospheric parameters.

6.1 Future Work

Figure 25 shows the laser beam end spot from the experiment in [2] next to two

beam spots generated by the coupled solver using two different δ values. The exper-

imental beam spot shows a degree of deformation and blurring somewhere between

the numerically generated beam spots in Figure 25. It appears that δ for the experi-

ment by Wick and Lloyd lies somewhere in the interval (10−3, 10−2). Future work in

this area will include further matching simulations to laser experiments in order to

determine a relationship between δ and scintillation parameters.

Decisions made for the fluid simulation in the coupled solver affected computa-

tion time and accuracy. The choice to use periodic boundary conditions so that the

numerical solution to the fluid equation could be simulated more quickly means that

the coupled solver actually uses the least accurate boundary conditions considered.

Future work will investigate faster methods of employing FOB. Investigating Radial

Basis Functions (RBF’s) to drive down computation costs in FOB is an avenue of

future work. RBF’s allow us to use fewer points to get higher resolution since FOB

does not need many points on the boundary leaving a lot of points for resolution in

the immediate area about the beam.

The FOB conditions required constructing and inverting a matrix that was di-

agonal dominant. The matrix diagonal dominance is a direct result of decay of the

basis set. This suggests an approximation to FOB using nearest neighbor methods.

RBF-finite difference methods incorporate a nearest neighbor method where the ba-

sis function computes values only for a set number of points near the point being

approximated. Future studies will look into applying this method in FOB to make
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Figure 25. Wick experiment has apparent δ ∈ (10−3, 10−2); middle and leftmost pictures
are generated from coupled solver with δ = 10−3 and δ = 10−2 respectively. Finding δ
values for experimental results is an avenue for future research.

applying fast inversion techniques possible.

The finite difference solver for fluid dynamics bears further investigation as well.

There are fast poisson solvers that can be brought to bear to bring down the compu-

tation time [101, 102] of the finite difference solver since the solution to (16) takes the

most time to compute. Reducing computation time for our simulation was not the

focus of this study, but a comparison of coupled solver performance could be made

using fast Poisson solvers in the fluid solver.
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